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Abstract

GYRO is used to examine the perturbed magnetic field structure generated by electromagnetic

gyrokinetic simulations of the CYCLONE base case as βe is varied from 0.1% to 0.7%, as investi-

gated in [J. Candy, Phys. Plasmas 12, 072307 (2005)]. Poincare surface of section plots obtained

from integrating the self-consistent magnetic field demonstrate widespread stochasticity for all

nonzero values of βe. Despite widespread stochasticity of the perturbed magnetic fields, no signif-

icant increase in electron transport is observed. The magnetic diffusion, dm [A.B. Rechester and

M.N. Rosenbluth, PRL 40, 38 (1978)] is used to quantify the degree of stochasticity, and related

to the electron heat transport for hundreds of time slices in each simulation.
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INTRODUCTION

One of the fundamental components of a steady state tokamak or stellerator fusion re-

actor is the integrity of nested magnetic surfaces. Loss of these magnetic surfaces can have

very serious implications, ranging from sawtooth crashes to disruptions. A mechanism for

destroying surfaces is electromagnetic instabilities. Gyrokinetic simulation codes are now

capable of modeling plasma microturbulence including kinetic ions, electrons and electro-

magnetic effects [1–4], allowing for study of magnetic surface integrity in the presence of the

perturbed magnetic field. Gyrokinetic simulations including kinetic ions and electromag-

netic effects [2, 5, 6] were done about the CYCLONE [7] base case operating point. The

strength of electromagnetic effects is quantified by the electron βe = 8πneTe/B
2, where ne

and Te are the equilibrium electron density and temperature, and B is the magnitude of the

magnetic field. For plasmas with equal ion and electron temperatures, 2βe = β = 8πp/B2,

where p is the total plasma pressure. In the following analysis, βe is varied from zero to 0.7%

about the CYCLONE base case. The behavior of gyrokinetic simulations about CYCLONE

for βe values beyond what is presented here is the subject of ongoing study [8, 9], and not in

the scope of what will be presented. For reference, the ideal MHD β-limit for this simulation

is βe ∼ 1.5% under the artificial assumption αMHD = 0, as detailed in Reference [5].

Figure 1 demonstrates the relative magnitude of ion and electron heat flux over the

range of the βe scan run with GYRO. The electron transport is divided into electrostatic

and electromagnetic components, where the electrostatic component results from the radial

component of E×B drifts and the electromagnetic component represents the radial motion

of electrons caused by streaming along the total magnetic field (equilibrium plus perturba-

tions). The ion diffusivity is almost entirely electrostatic because the dominant instability

with CYCLONE parameters is the ion temperature gradient (ITG) instability. A physical

explanation for the drop in ion transport with increasing βe can be understood as βe stabi-

lizing the ITG instability by diverting energy into bending the field line [10]. Over the range

of βe studied, the magnetic flutter component of electron transport increases from effectively

zero to a fifth of the total transport or about 30% of the electron transport. The CYCLONE

base case parameters are R0/a = 2.775, r/a = 0.5, Te = Ti, R0/LTe = R0/LTi = 6.99,

R0/Ln = 2.2, q = 1.4, s = 0.786, and νei = 0. R0 and a are the major and minor radii of the

tokamak, Te and Ti are the equilibrium electron and ion temperature, the temperature and
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FIG. 1. (Color online) Ion (black), electron electrostatic (blue) and electron electromagnetic (red)

heat flux vs βe. Time averages are taken between t = 150cs/a and t = 500cs/a.

density gradient length scales are defined as LTe = (dlnTe/dr)
−1 and LNe = (dlnNe/dr)

−1,

q is the magnetic safety factor with the magnetic shear s = (r/q)∂q/∂r, and νei is the

electron-ion collision frequency normalized to cs/a where the sound speed cs =
√
Te/mi.

The CYCLONE geometry is a circular s-α geometry, with α = q2Rdβ/dr set to zero. In

addition to varying βe, we also use kinetic electrons with mass ratio µ =
√
mi/me = 42.

This choice of mass ratio corresponds to a hydrogen plasma as opposed to deuterium, and

matches the value chosen in References [3, 5]

GYRO employs a fieldline following coordinate system using spatial variables (ψ, θ, α),

and the Clebsch representation [11] for the magnetic field B0 = ∇α ×∇ψ. The coordinate

ψ, equal to the poloidal flux divided by 2π in general gemoetries, is related the midplane

minor radius r for circular geometries. The fieldline label α relates to toroidal angle φ by

α = φ + v(r, θ). Because r and α label field lines in the Clebsh representation, θ is both

the poloidal angle and the position along a fieldline labeled by remaining coordinates (r, α).

The velocity grid of the presented data consists of 128 points (8 energies,8 pitch angles,

and 2 signs of velocity). The spatial grid consists of 14 parallel gridpoints for each sign of

velocity, 120 radial gridpoints and k⊥ρs values are (0,0.084,0.168,...,1.26) for a total of 16

toroidal modes. We use k⊥ to represent the component of the wavenumber in the direction

3



perpendicular to both ∇ψ and magnetic field unit vector b = B/B. The sound radius

ρs = (miTe)
1/2/eB with e being the magnitude of the charge on an electron.

Recent work on this βe scan of the CYCLONE base case demonstrates widespread break-

ing of the magnetic fieldlines even at the lowest nonzero value of βe [12]. The authors find

that the broken surfaces do not result in a dramatic rise and transport, and use the mag-

netic diffusion coefficient [13] to describe observed levels of electron transport. Here, we

expand on the results of [12] in several ways. We emphasize that the reconnection must be

driven nonlinearly, that the stochastic structure is a consequence of interaction of islands

of different order and extend the analysis beyond the CYCLONE base case to a simulation

where the microtearing mode is the dominant instability. The paper is organized as follows.

In Section 2, we give a criterion (the resonance condition) for magnetic reconnection and

demonstrate that it is satisfied for the lowest value of βe in the CYCLONE scan. Upon ob-

serving reconnection, we produce Poincaré surface of section plots to analyze the structure

of the field, and demonstrate both that the field is stochastic and the stochasticity must be

caused by interaction of islands of differing order. In Section 3, we demonstrate a quantita-

tive relation between the Rechester and Rosenbluth magnetic diffusion coefficient [13] and

electron heat transport. The predictions of electron heat flux are compared to output from

GYRO, and this model is then applied to a simulation where the microtearing mode is the

dominant instability.

RECONNECTION AND STOCHASTICITY

In GYRO, the magnetic potential A‖ is decomposed into Fourier harmonics given by

A‖(r, θ, φ) =
j=N−1∑
j=N+1

A‖n(r, θ) exp−inα, (1)

with n = j∆n. To ensure A‖ is real, only nn = N + 1 complex modes j = 0, · · · , N are kept

in the simulation with the requirement A∗‖n = A‖−n for the negative j counterparts. A‖ then

causes magnetic reconnection if it satisfies the resonance condition [15], m = nq(r). Here, n

is the toroidal mode number and m is the poloidal mode number. In effect, this condition

determines the radial locations where the magnetic potential A‖(n) is resonant. Because
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gyrokinetic simulations have discrete toroidal mode numbers, the resonance condition is

satisfied at discrete radial locations determined by the safety factor

q(r) = m/n ≈ q0[1− s(r − r0)/r0]. (2)

The center of the simulation r0 = .5a is where the safety factor q0 = 1.4. The minimum n

value in the simulation is 12, with all other values of n being integer multiples of the minimum

value. Because the smallest n value is quite large, we note that any reconnection observed

must be caused by higher order islands- the lowest order resonant rational surfaces in the

simulation domain are 14/12, 15/12, 16/12 and 17/12. The radial locations corresponding

to these values are found using Equation 2 with n = 12.

Once the radial locations of resonances have been determined, the proper toroidal mode

number m must be singled out. This amounts to requiring A‖ to have a nonzero average

parallel to the field at the rational surface locations r = rrat(n). In GYRO, it is equivalent

to find the resonant component of A‖ by considering the parity of the magnetic potential

with θ. Modes even in θ can be resonant while odd modes cannot. The most unstable mode

in CYCLONE, ITG, is driven by the electrostatic component of the perturbed fields, having

even parity in electrostatic potential Φ along the field line. The linear gyrokinetic/Maxwell

equations couples φ to A‖ with the opposite parity along B. The unstable ITG mode in

CYCLONE base case has even parity in φ,coupling to odd (ballooning) parity in A‖. The

fieldline average of the odd parity A‖ must vanish. Hence, any reconnection observed in our

CYCLONE base-case simulations must be nonlinearly driven. An analysis of the parallel

mode structure of eigenmodes in CYCLONE (ITG as well as damped modes) in relation to

tearing parity is presented in [16].

As described in [12], nonlinear simulations do in fact cause reconnection. The resonant

(even parity in θ) component of the magnetic potential can be obtained by taking the

θ average δA‖. The q profile in CYCLONE combined with the toroidal mode number

resolution will determine the radial positions of rational surfaces.

Ares‖ =
〈
A‖(r = rrat, n, θ)

〉
θ
. (3)

Figure 2 displays the resonant component of A‖(n = 12) versus radius and time for

βe = .1% on a log scale. The lines located at r = 2.97ρs, 17.86ρs, 32.74ρs and 47.62ρs
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FIG. 2. (Color online) Resonant intensity of magnetic potential vs radius and time. Vertical lines

are rational surface locations

are the rational surface locations of the fundamental mode (n = 12 or k⊥ρs = .087) in

the simulation. Because the allowed toroidal mode numbers in GYRO are integer multiples

of the fundamental, the four radial locations listed are rational surfaces for all modes in

the simulation. The fact that the intensity does not vanish on rational surface locations

ensures that reconnection has occured, even at the lowest value of βe simulated. What we

cannot tell from Figure 2 is what type of reconnection occurs. Depending on the strength

of the perturbation, islands created by reconnection may be large enough to overlap with

neighboring islands causing stochasticity [14] or be small enough to be isolated from each

other. Should the answer be widespread stochasticity, electrons would be free to travel

across magnetic surfaces by parallel streaming and would raise significant concerns for the

electron heat conductivity.

One tool to analyze how the reconnection is manifested is Poincaré surface of section plots.

Surface of section plots are created by tracking the trajectory of a magnetic fieldline (r0, α0)

and recording updated values (ri, αi) each time the fieldline crosses the outboard midplane.

With the Clebsch representation, unperturbed fieldline trajectories are very straightforward

to lowest order in gyrokinetic expansion:
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dψ

d`
=

1

B
B · ∇ψ ≈ 1

B
B0 · ∇ψ = 0, (4)

dα

d`
=

1

B
B · ∇α ≈ 1

B
B0 · ∇α = 0, (5)

dθ

d`
=

1

B
B · ∇θ =

1

JψB
, (6)

where the Jacobian Jψ is defined as

Jψ =
1

(∇α×∇ψ) · ∇θ
. (7)

These equations serve to define `, the distance travelled along a field line. For the circular

flux-surface magnetic geometry employed in our simulations ∆` = 2πqR for one full poloidal

circuit ∆θ = 2π. Equations 4, 5 and 6 demonstrate that without magnetic perturbations, the

fieldline labels ψ and α do not evolve. The equilibrium fieldlines are periodic in coordinates

(φ, θ), but θ is NOT periodic in coordinates (α, θ), where GYRO simulations typically cover

a partial torus with toroidal domain 0 ≤ φ ≤ 2π/∆n. To account for the change in α over

a full integration in θ, the the fieldline lables α+ at θ = π and α− at θ = −π are related by

α− = α+ + 2πq, (8)

consistent with the partial torus domain. Accordingly, integrating from θ = π to θ = −π

causes α → α + 2πq. This represntation of α is periodic over the partial toroidal domain,

providing a rule for mapping alpha back into the interval −π∆n < α < π∆n.

The perturbed magnetic field δB is given by δB = ∇ × (A‖b) ≈ (∇A‖) × b. Inserting

this into Equations 4 and 5 we find, at first order in ρ/R, that the perturbed field line

trajectories are given by

∂α

∂`
=
∂A‖
∂ψ

,
∂ψ

∂`
= −

∂A‖
∂α

. (9)

The prescription for producing a Poincaré plot consists of integrating Equation 9 over

−πqR ≤ ` ≤ πqR from initial coordinates (r0, α0) to obtain new coordinates (r1, α1). The

new value of α1 is then modified by 2πq(r) to account for Equation 8. Final coordinates

(r1, α1) are recorded and given a dot on a plot with x axis r and y axis α, and the integration

procedure is repeated to produce (r2, α2), and hence a new dot. All Poincaré plots in the
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present paper were created using 100 initial conditions with each initial condition followed

3000 revolutions in θ. The initial conditions run diagonally through the map, starting with

r = 0, α = −π up to roughly r = 58, α = π.

Figure 3 demonstrates that the magnetic surfaces are destroyed for even the lowest value

of βe. Islands of stability are larger and more prevalent for the βe = .1% compared with

βe = .7%. The chaotic fieldlines are surprising to see because the magnetic component of

electron heat flux is very near zero in the low βe case. It is intructive to compare the width

of magnetic islands to the separation between rational surface locations to understand why

the surfaces are destroyed.

wisland = 4

√
qR

sB
|A‖|, (10)

wseparation =
1

k⊥s
. (11)

Equation 11 defines the radial separation between resonant rational surfaces correspond-

ing to a fixed k⊥ρs. If the width of an island created is larger than the distance to the

next island, the field structure will be chaotic [14]. Using Equations 10 and 11, we see the

intensity of A‖(kθ) is not large enough to create an island of a given k⊥ρ whose width is

larger than the separation between resonant surfaces 1/k⊥s for all values of βe and k⊥ρs

(Figure 4). However, this interpretation ignores the fact that island overlap can occur be-

tween resonances of different order. Because all toroidal modes are integer multiples of the

fundamental n0 = 12, the minimum radial separation wmin between a resonance arising from

n and n+ 12 is much smaller than the separation of resonances for a fixed n.

wmin ≈
∆k⊥
k2
⊥s

, (12)

where ∆k⊥ρs = 0.084 is the increment between neighboring values of k⊥ρ. The green line in

Figure 4 is Equation 12, and indicates that island overlap occurs between adjacent modes

at higher perpendicular modes. Figure 5 explores this phenomenon. The leftmost column

is the surface of section plot using Equation 9 using only A(k⊥ρ = 0.084), or the lowest

allowed value of n in Equation 1 for the integration. The second column is created by

keeping the first two modes of the system, A(k⊥ρ = 0.084) + A(k⊥ρ = 0.168), while the

third and fourth columns also include A(k⊥ρ = 0.252) and A(k⊥ρ = 0.252)+A(k⊥ρ = 0.336)
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FIG. 3. (Color online) Poincaré map for t = 450a/cs demonstrating stochastic sea at a) βe = 0.1%

and b) βe = 0.7%

respectively. The crossing of Equation 12 with the βe = 0.1% in Figure 4 indicates island

overlap to occur for roughly k⊥ρ > .4 , and we see the last column of Figure 5a) does not

produce widespread stochasticity. The intersection between Equation 12 and island width

of βe = .7% occurs for k⊥ρ > 0.2, and we indeed see chaotic trajectories beginning with

the second column of Figure 5 and fully developed in the third column. We conclude that

the widespread stochasticity found in gyrokinetic simulations of CYCLONE parameters is

necessarily a consequence of interaction of islands of differing order.
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FIG. 4. (Color online) Rational surface separation for constant k⊥ρs (black) and neighboring

modes (green) vs island width of βe = 0.7% (red) and βe = 0.1% (blue)

FIG. 5. (Color online) Poincaré plots for for t = 450cs/a and a) βe = 0.1% and b) βe = 0.7%,

where an increasing number of toroidal modes are kept. The first column corresponds to the

field trajectories of only k⊥ρs = 0.084, second including k⊥ρs = 0.084 and .168, third including

k⊥ρs = 0.084, 0.168, and 0.252 and the last column k⊥ρs = 0.084, 0.168, 0.252 and 0.336
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QUANTIFYING TRANSPORT CAUSED BY STOCHASTIC FIELDS

The lack of electron heat transport despite evidence of widespread destruction of magnetic

surfaces requires a nuanced interpretation of transport in chaotic fieldline trajectories. An

intuitive way to start would be by considering the mean-squared radial displacement versus

poloidal crossings. The magnetic diffusion coefficient [13], defined in Equation 13, is a

means of quantifying the degree of stochasticity in the fields. Poincaré surface of section

plots created in the previous section provide a direct method of calculating the magnetic

diffusion coefficient dm, given by

dm = lim
`→∞

< [ri(`)− ri(0)]2 >

2`
≈ lim

`→∞

1

2`

1

N

N∑
i=1

[ri(`)− ri(0)]2 . (13)

Note that dm has units of length. In the last step of Equation 13, we have averaged over

the 100 individual fieldlines followed in the plots. Figure 6 gives the magnetic diffusion

coefficient for several independent time slices for βe = 0.7%. dm is well estimated by taking

the average value between 1500 and 3000 turns because the values trend to a constant, with

variations over cycle number ncycle, within a single time slice being significantly less than

the variation between time slices. By producing surface of section plots at each time slice

of of simulation, the time dependence of dm can be calculated and compared to the time

dependence of the electron heat flux observed in our simulations.

Reference [17] describes an exact relation between the magnetic diffusion coefficient dm

and associated electron heat flux Qst in the collisionless limit, appropriate for the CYCLONE

base case. However, we caution the reader in that Reference [17] assumes a relation between

the ambipolar electric field, created from electrons diffusing by radial streaming relative to

static ions, to the density and temperature gradients of the equilibrium to derive the equation

below. It is far from clear that this assumption will be valid in a flux tube simulation where

there is no average radial electric field, and a more rigorous connection between dm and Qst

is the subject of ongoing investigation. Nevertheless, we present this model of stochastic

heat transport, found between Equations 6 and 7 in [17] as a ’working model’ for the energy

flux.

Qst = −2

√
2

π
dmvth

(
∂T

∂r

)
(fpn). (14)
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FIG. 6. (Color online) dm ∗ (2 ∗ 2πqR) as a function of turns around the tokamak for β = .7%.

Above, vth =
√
T/m is the thermal velocity of the particle. To compare this to the

transport output by GYRO, the density in Equation 14 is modified from the original reference

in that it must be multiplied by the passing particle fraction (fp ≈ 1 −
√

r
R
≈ 55% in

CYCLONE) because trapped particles are confined about the outboard midplane and will

not follow the stochastic fieldlines over long distances. The resulting stochastic electron

heat flux is then obtained by combining Equations 13 and 14. Figure 7 shows the excellent

agreement between the stochastic transport model and the actual output from GYRO in

both magnitude and time behavior. Fig 8 shows this agreement over the range of the βe

scan.

Stochastic transport for microtearing unstable simulation

We conclude our analysis by applying the working model of stochastic transport to a

nonlinear simulation where the magnetic component of electron transport consists of greater

than 97% of the total transport in the simulation. The local simulation aims to model

the NSTX discharge 120968, which is included in a set of confinement scaling experiments

[18, 19]. The numerically reconstructed equilibrium is used as well as the measured physical

parameters at r/a = 0.6, Ti/Te = 0.95, a/LNi,Ne = −0.83, a/LTi = 2.4, a/LTe = 3.7, µ = 60,
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FIG. 7. (Color online) Stochastic heat transport QGY RO (black) and Qst (red) vs time at βe = .7%
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FIG. 8. (Color online) Stochastic heat transport QGY RO (black) and Qst(red). Time averages were

taken between t = 150cs/a and t = 500cs/a. vs βe.

s = 1.7, ρ∗ = 0.0075, q = 1.7 and νei = 1.46. The spatial resolution includes 8 toroidal

modes (k⊥ = 0, 0.105, ..., 0.735) and 400 radial gridpoints, while velocity space contains 192

points(8 energies, 12 pitch angles and 2 signs of velocity). At this radial location the only

linear instability present is the microtearing mode, which has been observed previously in
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FIG. 9. (Color online) Representative Poincaré plot for simulation of NSTX shot 120968
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FIG. 10. (Color online) QGY RO (black) and Qst (red) vs time in NSTX shot 120968

some spherical tokamak discharges [20–22].

This simulation contains a finite value of collisionality (required for the microtearing

mode to be unstable), bringing into question whether Equation 14, which is produced in the

collisionless limit, is the appropriate relation between dm and Qst. The electron mean free

path is roughly 12.5 meters, while the stochastic correlation length [13, 14] Lc = πR/ ln(.5π∗
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ŝ) ≈ 2.5m. Because the mean free path is significantly longer than the correlation length, the

collisionless limit relating dm and Qst is still appropriate. As with CYCLONE, widespread

stochasticity is observed (Figure 9). In this case, the amplitude of A‖ is large enough so that

the island width of A‖(n) is larger than the rational surface separation 1/k⊥s for all but

the lowest two toroidal modes. Figure 10 plots Qst and the output heat flux from GYRO

versus time. The stochastic heat transport model does an excellent job of predicting the

baseline level of transport, but fails to describe bursts in transport, whose magnitude can

be triple that of the baseline. The bursts in transport are caused individually by the lowest

k⊥ρ modes in the system. To understand why the stochastic heat transport model fails to

agree with the bursts in transport in Figure 10, we begin by noting

Qem =

〈∫
d3v

1

2
mv2v‖

δBr

B0

δf

〉
, (15)

where 〈A〉 is the flux surface average of a quantity. In general, the drift kinetic equation

would solve for the electron perturbed distribution function δf .

∂δf

∂t
+ v‖

∂δf

∂`
+

[
v‖
δBr

B
+

(δE ×B)r
B2

0

]
∂f0

∂r
+ qv‖E‖

∂f0

∂v‖
= 0. (16)

The stochastic transport model assumes parallel streaming is the dominant effect on per-

turbed electrons and consequently only keeps the second and third terms in Equation 16.

Missing from the Rechester Rosenbluth treatment, but nonetheless potentially still of the

same order are terms containing the perturbed electric field, high frequency perturbations

and the response to the parallel electric field. Keeping only the second and third terms of

Equation 16, we find the following solution for δf :

δfv‖>0(`) = −
∫ `

−∞
d`′

[
δBr(`

′)

B0

]
∂f0

∂r
. (17)

δfv‖<0(`) = +
∫ ∞

`
d`′

[
δBr(`

′)

B0

]
∂f0

∂r
. (18)

Equations 17 and 18 are then used in Equation 15 to obtain the stochastic heat flux,

Qst ≈ dm

∫
d3v

1

2
mv2|v‖|

∂F0

∂r
, (19)
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where we used the fact that

dm =
1

2πqR

∫ πqR

−πqR
d`
∫ ∞

−∞
d`′
dBr(`)dBr(`

′)

B2
0

. (20)

The definition of Equation 20 is equivalent to that given in Equation 13 above (see, for exam-

ple, Reference [17]). The fact that the Rechester Rosenbluth model does so well in Figure 7,

suggests that parallel streaming is the only imporant effect in electromagnetic electron heat

transport for they CYCLONE base case, while the disagreement between Qst and QGY RO

indicates correlations between the vector potential and perturbed electric fieldcontribute to

the bursts in electron electromagnetic transport. High frequency perturbations (where the

∂f/∂t term might be important) were not observed in these simulations.

Outside of stochastic transport, there are many interesting and important results arising

from nonlinear simulations of the microtearing mode. A complete analysis of this simulation,

including a parameter scan and interpretation of the results, and is left for a separate

publication [23].

Conclusions

In the present paper, we have demonstrated magnetic reconnection and stochasticity

occuring in gyrokinetic simulations of the CYCLONE base case when electromagnetic effects

and kinetic electrons are included. The destruction of magnetic surfaces must be nonlinearly

driven and is caused by interaction between islands of different order. The stochasticity

does not necessarily correspond to an increase in electron heat flux, and is quantified by the

magnetic diffusion coefficient. Although assumptions in the derivation are suspect for flux

tube simulations, Reference [17] provides a working model to estimate the stochastic heat

flux from dm in the collisionless limit. By using the fraction of passing particles in Equation

14, the predicted stochastic heat flux is in excellent agreement with the output from GYRO

in both time behavior and magnitude over the βe scan. This estimate of stochastic energy

transport is then applied to an experimentally relevant operating point where almost all of

the transport is accounted by the magnetic component of electron transport. In this case,

the stochastic transport model accurately predicts the baseline level of transport, but fails

to describe intermittent bursts caused by the lowest modes in the system. In conclusion, the

presented findings suggest that eradication of magnetic surfaces on the microscale could be
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a ubiquitous phenomenon. The electron heat transport associated with chaotic surfaces is

well described by the magnetic diffusion coefficient dm. A rigorous relation between dm and

Qst and full analysis of the microtearing simulation are the subjects of ongoing research.
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